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A Tutorial On Model Error Concepts In Control Design
R. E. Skelton

School of Aeronautics and Astronautics

Purdue University
West Lafayette, IN 47907

Abstract

Traditional modeling notions presume the existence of a "truth” model that relates
the input to the output, without advanced knowledge of the input. This has led to the
evolution of education and research approaches (including the available control and
robustness theories) that treat the modeling and control design as separate problems.
This paper explores the subtleties of this presumption that the modeling and control
problems are separable. A detailed study of the nature of modeling errors is useful to gain
insight into the limitations of traditional control and identification points of view.
Modeling errors need not be "small" but simply "appropriate” for conwol design.

Furthermore the modeling and control design processes are inevitably iterative in nature.

Introduction
It is difficult to know a priori what type of modeling errors will be significant in

the control design problem, and this issue is typically left to ad hoc approaches with the

hope that "robust” control design techniques will somehow compensate for any error left
in the model. However, significant performance improvements are often possible by
obtaining more appropriate models at the outset, as opposed to placing all the burdens for
the compensation of modeling errors on the control design. Even in identification
approaches to modeling, the adequacy of the mode! for control design is unknown [1]. It
is useful to revisit the formal structure of modeling errors to point out some common
misunderstandings about their nature.

Perfect models are never required nor are they possible to construct. Some
modeling errors are always acceptable. For example, in most aircraft or spacecraft

control problems, these errors arc probably acceptable without reservation: (i)
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microscopic effects (molecular motion in the wings), (ii) relativistc effects, (iii) the

higher order effects of earth oblateness on the environmental disturbances.

It is common practice in engineering to develop models of dynamic systems
without regard to the impact that input forces have on the validity of the model. Unlike
relativistic errors, this is a serious impact that needs further clarification. We shall see
that the nature of the input forces dictate the validity of the model. If the input forces are
to be controlled by a feedback controller, this means that the controller design dictates
the validity of the mathematical model, rather than the other way around. (Control texts
like to say that the fidelity of the controller is dictated by the fidelity of the model). An
example clarifies the idea. A plate of steel might be characterized as a rigid body. A
rigid body model is appropriate if the forces to be applied are relatively small. Large
forces will deform the plate and can render a rigid body model useless for predicting the
dynamic response. This argument continues indefinitely. The more accuracy required in
the predictions of dynamic response, the more carcful'one has to be about including
small effects in the dynamic model (non-homogeneous material properties of the steel,
air turbulence, thermal gradients, etc.). This quickly leads to the conclusion that the
validity of a model cannot be assessed by its open loop response. The modeling errors
that are acceptable depend upon the control forces.

Figure 1 illustrates the steps in the modeling process. The first step is to adopt an
"idealization" of the system. Two examples will clarify the meaning of "idealization" 1)
If the physical phenomenon is a mechanical structure, we might "idealize" the structure
as arigid body. Another idealization is a flexible platc-. The actual structure is neither a
rigid body nor a flexible plate, but such a hypothesis (c.g.‘ rigid body) forms our
"idealization” of the structure and this occurs before any mathematical models are yet
formulated. 2) Another type of idealization occurs in identification experiments. When
we try to fit a canonical model (e.g. phase variable form) to the input output data, we say

that the canonical structure forms our "idealization" of the plant. (The word plant is used
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-Fig. 1 Steps in the Modeling Process

"to- include the characterizations of the disturbance environment as well). Hence,

idealizations lead to errors in model structure and model order.

The second step in the modeling process is to apply known physical laws to
develop a mathematical model of the idealization. This step introduces parameter errors
(values of mass, inertia, spring constants, etc.). This step might be Qmittcd if the model
is developed from experimental data.

The third step is the simplification of the model. High order models may be
reduced to low order models. This step leads to errors in model order and parameters.

The fourth step is controller design based upon the model obtained in step ITI. The
purpose of this paper is to discuss the types of errors that have small and large impacts on
the controller design.

The controller design procedures which are tractable are usually of high order.
(Both LQG and H™ controllers are of order generally equal to the model order). Hence, a

fifth step in the modeling and control design process is controller reduction. (If an
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.optimization is performed to obtain the controller of specified low order directly, the

controller reduction and/or the model reduction step is omitted).

This paper is a tutorial on the concepts of model errors in model based control
design. The paper poses some old questions, some new ones, and adds some conjectures.
The intent is to clarify some common misunderstandings about the nature of modeling
errors and their impact in feedback control.

The paper is organized as follows. Section 2.0 cites simple examples which
motivate the need for a more precise way to characterize "acceptable” modeling errors.
Section 3.0 characterizes the structure of all modeling errors, and describes a modeling
and control inseparability principle. Section 4.0 describes the closed loop impact of
modeling errors and presents an uncontrollability, unobservability principle. Section 5.0

offers some conclusions.

- 2.0 Motivating Examples and Some Modeling Principles

This section illustrates four modeling principles by examples.

MODELING PRINCIPLE I: arbitrarily small modeling errors can lead to arbitrarily
bad closed-loop performance

For the system described by the transfer function

1
G(s) = ————— , 1
© (I+s)(1+e8)* o

let € >0 be small, possibly representing fact actuator or sensor dynamics. If the fast
dynamics are ignored (a common approach in practice) then the control design model
becomes

Gr)= T @



where, for a =1, it may be shown that the step input errors between G(s) and G,(s) are

bounded by

t>0. 3

- =7-14 Ligeey— 2eec
ly(t) — yp(®)! =L {S[G(s) GR(s)]}< =

Hence the modeling errors as measured by the open-loop response are arbitrarily small if

€ is arbitrarily small. Suppose an output feedback controller with u =-Ky. If
K« — B 4
% @)

then the model Gg(s) is also useful for predicting closed loop behavior, since

Gg(s)
1+KGR(S)

1

yr(s) < = y(s). The interesting observation about (4) is that it tells that

‘the usefulness of the control design model Gg(s) for predicting closed loop behavior
- depends both upon the modeling error (characterized by €) and the controller gain K.

This illustrates the theme of this entire paper; the modeling and control problems are not
independent.
Now suppose the requirements on modeling error and control design (4) are

violated to the extent that

1
K> ®)

(The reader may verify that K= 741; corresponds to the breakaway point on the root

locus). Now the model Gg(s) and controller (5) predict a closed loop system with no
overshoot, no oscillations and a small steady state error. However, the actual response
will yield severely underdamped oscillations for & = 1, and instability for a = 2).

The point of this example is that arbitrarily small modeling errors do not lead

necessarily to small errors in the closed loop predictions. The following example



illustrates that small modeling errors can lead to large errors in optimality and maximal
accuracy predictions.
Consider (1) with =2 and the same Gg(s) = 1/s+1. Let K be the optimal control

for the model Gg(s) so as to minimize

V = [ [yf® + pu(M)]dt=V, +pV, )

Then
K=-1+VI+p| )

and the closed-loop system performance of (1) with u=-Ky is described in Fig. 2 in

terms of V, versus V, as p varies from e — 0.
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Fig. 2 Errors in optimal controller (not to scale)

2 . .
For p< -i— the actual closed loop system is unstable, whereas the predicted behavior

based on Gg(s) approaches its maximal accuracy, [V, (predicted)] — 0, as p — 0.



Hence, in the neighborhood of maximal accuracy predictions for Gg(s) in Fig. 2, the
actual system delivers its worst performance.

Now for the system (1), consider the "absurd” design model

Gg(s) =

®

(1+€s)

in lieu of Ggr(s) = -;%1— This model is "absurd” to the extent that the open-loop step

response error is not necessarily small. The optimal control for this realization of the

plant (A =~ -::- B= -:- C=1) yields the optimal control u=-Ky, K=~1+Vl+p-],

which is precisely the same K as for model Gg(s) = sTll-! Hence the actual performance

is the same as that described in Fig. 2, and models Gg(s) and G;{(s) are equivalent for the
purposes of control design by (6). There is an infinite number of controllers in this
comparison (one for each selected value of p). Hence, this equivalence is not just for an
isolated control based upon models G;'{(s) and Gg(s).

The performance predicted by model G;((s) is shown in Fig. 2 to be arbitrarily far
from the actual performance for large values of p and for small values of p, although the
predictions are close to those of model Gg(s) for small p.

In Fig. 2, the comparison between the "actual” and "predictions from G(s)" indicate
that for small gains (small V, large p) the actual performance agrees with the
performance which would be optimal using the exact model G(s). That is, model errors
do no damage for small enough control efforts. The actual performance has a "best"
performance at a particular value of control effort (p = €2) and incrcasing control efforts
beyond this point degrades performance leading eventually to instability (p < e¥/4). All
controllers will drive a physical system unstable as the control effort is increased enough
(see the conjecture below). The shaded area in Fig. 2 describes the difference in

performance between that which would be optimal for the exact plant G(s) and that



which results from controllers which are optimal with respect to an erroneous model
{GR(s) or G;{(s) in our example}. This property is generic, according to the conjecture
below.

Let S; be a linear dynamic controller which is optimal for the linear model §,. Let
the actual linear plant be S, and its optimal controller be S ,(which we cannot
construct!). Since mathematical models are always approximations of the physical plant
So#S, LetV, denote the output norm when S drives S,,. Let V, denote the output
norm when S, drives S,. V, takes on its smallest value V,, when the control norm has

value V,. V,, takes on its smallest value V., when V, is arbitrarily large V., see Fig. 2.

Conjecture:
Conzroller S. (optimal for model S,) driving plant S, always yields an unstable

closed-loop system in the neighborhood of maximal accuracy predictions using any S,.

Hence,
‘1,1'_,5 Vyp)=oo, (9a)
gi_x}.l_ [Vy(P) - V(@] =0 (9b)
Zy > Zyo | (9¢c)
Vi<V (9d)

indicating that the actual maximal accuracy V, 4 {(minV ((actual)} occurs always at a
lower value of control effort V, than the predicted maximal accuracy Vo 4
{min V(predicted)} which occurs at a value of V .

This conjecture asserts that real controllers (always based upon erroneous models)
will always be bad (unstable) for large control effort V,, and will always be as good as the

optimal controller for arbitrarily small control effort (9b). For quadratic criteria, this



suggests that a meaningful comparison of candidate controllers should be conducted in
the neighborhood of the maximal accuracy V,, for each controller. Each controller
design, (based perhaps upon different reduced order models), will yield a different Vy,.
Furthermore one cannot say a priori which is the best reduced order model (as’thc above
examples illustrate). Hence, again we see the dependence between the modeling and

control problems.

MODELING PRINCIPLE L: large open-loop modeling errors do not necessarily lead to
large closed-loop prediction errors

Most of the available theories on model reduction [1-14] try to achieve "small"
modeling errors, according to some open-loop criterion for minimization. (Example 1
may even provide some motivation for this goal). The appreciated virtue of balancing
and Hankel norm methods [14] is the existence of an upper bound on the size of the
transfer function error. The purpose of this example is to illustrate that it is not necessary
to have small modeling -errors if the control scheme has the right characteristics

(remember the theme of the paper). Consider a plant described by
Gs) = —— (10)
s+1

and an approximate model
Gr(s)=1/s. (11)

The controller again is output feedback u=-~Ky. Note that the actual system (10) is
asymptotically stable, whereas the approximation (11) is not. Gg(s) would not be
deemed a good approximation of G(s) by any of the model reduction theories available in
the literature. It is interesting, however, to ask "in what sense is Gg(s) a good model for

predicting closed-loop performance of the plant?”
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(i) Stability of Gg(s) under the feedback gain K will also yield stability of G(s)
under this K.
(i) Errors in predicting performance of the step response are given by

1
Iy(t)-yR(t)I<-i:I-{-, t>0. (12)

Hence the errors in the closed loop response predictions can be made as small as desired
by choosing an appropriate X, despite the fact that open-loop errors are large. Thus,
closed loop effects of the modeling errors may be smaller than the (open-loop) modeling
errors. The conclusion from this example is that the modeling errors should be
appropriate for the controller design and not necessarily small. (We do not suggest that
high controller gains are always appropriate).

To illustrate that large modeling errors can yield even zero closed loop errors,
consider the following examples. We have already shown that two models of the same
order, yet not related by a coordinate transformation, can yield the same controller (7).

This concept is not limited to models of the same order. Consider models for standard

LQG design:
x=Ax+Bu+Dw, z=Cx, z=Mx+v

with zero mean uncorrelated white noises w, v, with intensities W =4, V=1, The same

controller given by
x.=AX,+F,, u=Gx,
A.,=-3, F=2, G=-2,

Optimizes all three of these models:



.

by
01 0 of G =110
A=l10|r BiZ|gfr D=y M=o
II)
-1 1 2 15] Gy =3, 4079,
Ar=i_1 1|+ Ba={o|» D2=]417|» M, =18 5
()

A;=-1, B3j=.2, D3=15, C3=V3, M;=.8
with respect to the design objective V,

V=E.@8y*+u), E.LlmE
{—pen

models (I-IIT). Hence models (I-III) are equivalent models with respect the control
objective V. The striking observation here is that the open loop responses of the "control
equivalent” models (I-IV) are not similar nor "close"” by any open loop measure, yet all
three models are equally good for the control design. Fig. 3 showsb an open loop impulse
response of the models. Two of these models were taken from [26]. Other control

equivalent models are discussed in [27,28].

Let a given system S, be controlled by a controller S (S 1) based upon a model S;.
Modeling Principles I and II and the above numerical examples lead immediately to the

11

"That is, the same closed loop value of the performance metric is obtained with all three

conclusion that making errors "small” is extremely difficult and also unnecessary.
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Fig. 3 Impulse response of three "control equivalent” models

Modeling Principle III is a natural consequence of these two facts.

MODELING PRINCIPLE III: open-loop modeling errors (and hence their bounds) do
not generally constitute enough information for successful control design.

Of course, the previous discussions and examples provide the clue to the missing
information. Knowledge of inputs are required for any assessment of fidelity of the
model. This principle is not limited to quadratic criteria for system evaluation. See for
example from the Nyquist plot of Fig. 4 that many different models of a plant may yield
controllers with a common gain and phase margin. Hence, models may be "control
equivalent" by any control design criterion, classical or modern. Such equivalence seems

to have no direct relationship to the open loop modeling errors. '
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Fig. 4 Three controllers yielding the same gain & phase margins.

3.0 The Structure of Modeling Errors
For the sake-of discussion only, imagine a mathematical model so accurate as to
mimic the physical phenomena for all practical purposes. ‘Then in the following

arguments we refer (by a slight abuse of language in this Section only) to the model
X =Ax +Bu+w +1f(x,u,t) (13a)
z=Mx+v +g(x,u,t) ' (13b)

as the "physical system" with the control inputs ugR ™", disturbance inputs w eR" and
measurements z €eR™. The terms f(x,u,t), and g(x,ut) represent nonlinearities and
w(t) represents any time varying disturbances (w(t) is not a function of x or u). Of
course, to attribute "physical system" status to (13) the dimension of the state x
approaches infinity. We shall consider it large but finite. Now with respect to any

mathematical model of the form
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x=Ax+Bu+w, xeR™ (14a)
z=Mx+v zeR™ (14b)

which might be used to represent the actual system (13), we wish to completely
characterize the model errors of (14) with respect to (13). For this purpose rewrite (13)

in the partitioned form

iR Ap ARrt| |XR By WR frix,u, )
x'.r = ATR AT XT + BT u+ wT + f-r(x,u,t) (15)

XR
z=[MgMq] [XT] +v + g(x,u,t)

where xg € R™ has the dimension of x. Using the following deﬁniﬁon§
AA24r-A, ABEBp-B, AMA&Mp-M, : (16)
The equation for xg and z can be written, from (15), (16)
Xg=(A+AAXg + AgpxT+ B+AB)u + wg + fr(x, u, t) an
z =M+AMxg +Mxt+v +g(x,u, 1)
or simply,
Xp=Axg+Bu+w+e,, (18)
z=Mxg+v+e,

where
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Al [aA AB ARt wr=wi | frGxgx0)
c= c, = AM o 0 u+ MT Xr+ V-V + g(xR,x-r,u,t)

e=e,+e,+eg+e, (19)

P

We now have the following conclusion from (19).

MODELING PRINCIPLE IV: For every model of the form (14) there exists "model error
vectors” e, and e, which represent "corrections” to the state equation (14a) and
measurement equation (14b), respectively, such that z evolving from (14) matches the
measurements z from the physical system (13) if e, is added to (14a) and e, is added to
(14b). Furthermore, the model error vectors can always be decomposed into the sum of
four kinds of errors: parameter errors e, errors in model order e, neglected
disturbances e4 and nonlinearities ¢,.

Note that all four types of modeling errors e, €,, €4, and e, are always present with
any mathematical characterization of a physical plant. We wish also to declare at the
outset that there exists no control theories which can promise satisfactory control in the
simultaneous presence of all four categories of modeling error. Techniques are available
which have made progress only in the accommodation of a subset of these four types of
modeling errors.

Certain other conclusions are also obvious from (16). The partitioning of the state
vector (15) was necessary to define "parameter errors” with respect to a specified model
of lower order. The matrices A g, By, and My result from a partitioning of (13) after (13)
is written in a selected coordinate frame. It should be clear .from (16) that since the
parameters Ag, Br, and My depend upon the initial coordinates in (13), the phrase
"parameter errors” in dynamic systems has no precise meaning. Indeed, the definitions
(16) are as precise as one can be, yet these definitions are arbitrary to within a coordinate
transformation on (15). Note that if one chooses a canonical structure for (A, B, M) in

(16), such as phase variable or Hessenberg form, etc. the parameters of (Ag.Br,MR)
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.may not have the same structure. Hence, (AA,AB,AM) does not generally have a

canonical structure. This suggests that one should not expect parameter adaptive control
schemes to converge if a presumed canonical structure of the parameters has been
presumed. Also, note from (19) that a change in coordinates which changes the ep term
will also change the other terms ¢, and e,,. Hence, the individual terms e, ¢,, ¢5and ¢ in
the model error decomposition (19) are not unique.

It does not serve our purpose to characterize the model error vector explicitly in
terms of higher order model states x1. For the reduced model (18) the vector functions
¢, and e, can be considered functions only of xg and u and t. Eq. (18) shows that e, is a
function of x, but xr is in turn a function of xy, u, and t, as the solution of the second

equation in (15) reveals
t
X R,,1) = Op(t,0)x T(O)+[Pr(t—0)(A rrx g+B rutwHr(x g X1,0,0))d0  (20)

where O is the state transition matrix for At. Hence, for (18) we may consider ¢, to
depend only on (xg, u, t), and when we need to do so we shall write e,(xg,u,t). In fact,

using (20) the model order error e, of (19) may be characterized by

ARt ARt| ¢t Agpt| ¢
¢o= prp | (PrEOXTOM| I !d»r(t-o)w-r(c)doh My [[Or{(t~0)A rpxgdo]

- " -

— Cod €ox —

Apr| ¢ Apr] t

ua [[®1(t—0)B qudo}+ My [[®(t~0)fr(x g x1,u,0)d0) @1
(] « ] V— R
— eOl.l con

From (19) and (4) conclude that e may be written
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e= {cpx‘*'cox} + {eputeou) + {€oteogtea) + {enteon) (22)

With respect to the reduced model (14) the first bracketed term in (22) denotes errors
which depend on the state xg (e, is a linear function of xg, while €, is an integral
operator on xg), the second bracket denotes errors which depend on the control ue, isa
linear function of xy, while e,, is an integral operator on u, the third bracket in (22)
denotes errors which depend only on time, and finally the last bracket in (22) denotes the
errors due to nonlinearities.

It is important to note that the model error vector e, in (18) dépends upon the
integral of the input u. Hence, one cannot assess the impact of modeling errors e,
without knowledge of the nature of the controls. Even small inputs u can have an
arbitrarily large effect in e,(t). To see this let A1 be a positive scalar and u(t) = € =
constant. Then e, (t)=(A RTBTEJAT)(cAT‘-l) gets arbitrarily large in this example.
Hence, the homogeneous part of the system may be modeled arbirrarily closely
(e, arbitrarily small or zero) and yet the model may not be acceptable for control design

(Modeling Principle I).

The Model Error System

The model error structure (21) can be further detailed. See that e, satisfies the

differential equations

) ARt ARt ¢ .

Sox = | prp | ATRER* | gy ! ATO1(1—0)A Trxrdo (23)
and the definition

Apt| t |
e, 2 [ MTJ { A1 Or(t—0) rpxpdo (24)

allows (23) to be written
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) ARt
Cox = Mq ATRXR + €15 (25)
and likewise for e;, and e;,
. ARt
Cix= My ATATRYR +€x
) At , _
= MT ATA TRXR + e(m),‘ . 1= 0, 1, ooy o (26)
Similarly for e, in (21)
) ART
Cou= My Bru+ey,
. |ArT| .
= MT ATB T+ e(i-l-l)ll i=0,1,..,. (27)

The deleted state x, and hence A, is usually quite large so that the range of i is a large
finite number.
Equations (26), (27) and (22) are now combined with (17) to give the exact

structure of the model error system

Xg = Axg + Bu+ w + Ejgl(€oxteo ) Hep e mtecten] (28a)
ex=Pxr+egyx  i=0,1,..,. (28b)
Cu=Qu+ezan i=0,1,..,. . (28¢c)
z=Mxg + v+ Eq[(Cox+tou) + (Cpxtepu) + € +eN] (28d)

where E;o 2 [10], E; 2101],
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li>

P;

and

ex-—écm+e°d+cd, eN=Ac,,+c°,,,

ARt , A ARt i
M| ATATR, QS| | AtBT,

using the definitions of e, €4, €y, €oq in (19), (21).

In state form (28) becomes

d A

"Rl [A+AA Ejg E;0 0 00 0 0
Cox P, 0 0100000
Cou 0O 0 0010000
€1x P, 0 0001000
E1u 0 0 0000I 00O
&l ={ P, 0 0000010
& 0 0 000000TI
2] |M+AM E,; E;0 0 00 0 0 0

0

u+

©C O O O O

V+E° 1 (Cl'f'CN)

19

29

(30)

€Y
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Note that the matrices which are unknown are P;, Q;, AA, AB. Knowledge of the model

error structure (31) might be very useful in analysis (predictions of performance) and
control design. Most adaptive approaches to control ignore the e;,, ¢;,i=0, 1, - - terms
in the model error system (31). It might be useful to research the inclusion of one extra

term.
The transfer functions of (28) are developed as follows. In the context of linear

systems, we shall ignore ey. Take the Laplace transform of (28) and see that

2(s) = (M+AMHE, (3 Pys* ) [(sI-A)-AA-E, (3 P/s*)]  [(B+AB+
i=0 i=0

E,o(3 Qs )u(sH+E gectw] + Eo1(éoQi/si'*l)u(s)+v(s)+Eloe,(s)
z .

To simplify this expression define

A AA wheni=0 AM wheni=0
Px=1E, P, wheni>0 Pi2= JE,P,_, wheni>0 (322)
A AB wheni=0, A
Qix= 1E,Q., wheni>0 Qiz™ Eo1Qn
(s) 2 (sI-A)! ' (32b)
then
2(s) = ([M+ 3 P /s [®7(s)- zrk/si]-‘[m}: 0.,/s']
=0, i=0, i=0,
+Y Qiz/si} u(s) + e,(s) (33)
=1,

where e (t) represents the effects of only rime -dependent terms,
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€,(s) = M+ T P ofsT O (5)= T P i/ [W(SIHE  02(5)]
i=0 i=0

+ E 16(8) + v(s) .

Let the inverse of the sum of two matrices be written
[@7+¥] =D T (-1 (¥DY] .
=0,

This can be verified by writing [®~+¥]x = y as ®'x = (y-¥x) or
x = O(y-¥x)
= By - ¥ D(y-¥x)

= etc.

Now let
y 4 iy, A iy A i w, Ay
1= =2 Py/s, 2= TPIS, ¥3= T 0ufss ¥y= O,
=0, =0, i=0, =0

I(s)2 T (~199{(s)Di(s)

FL
Then
z2(s) = (M+¥ () D(s)I+I(s)}[B+¥3()]+Y4(5) }u(SFe «(s)
= [G(s)+AG(s)]u(s) + q(f) (34)
expressed in terms of the (known) transfer function G(s) = M®(s)B, where
AG(s)2 4(sHMO(5) W3 (sHMD(S) (s1+¥2(5)D(8)+F5()D(8)I ()] [B+T3(s)]

e (s) = IM+¥o()JP(S)[T+I())[W(SHE 1 oe,(S)IHE 1 ,(s)+V(s) (35)
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Both expressions (31) and (35) simplify greatly by special choices of coordinates
of (15). Without loss of generality one can take AM =0 and M1 =0 if dim z < dim xp.
To see this, note that a similarity transformation on the state x = T1| can always take the
measurement z=Mx to z = MTn=[10]n if rank M =dim z<dimx. Of course, we
cannot construct this T (since we don’t know M), but we know that it exists. Therefore
by assuming that the states of our model are not fewer than the number of measurements,

we can, from (29, 32) without loss of generality set
E,P;=0, E,;Q=0.
Hence, from (32), @, =0, and P;, =0 for all i. This simplifies (35) to
AG(s) = MD(s)¥5(s) + [M+¥5(s)]D(s)I(s)[B+¥5(s)] .
e(s) = MO(s)[T+I()][W(sHE gt ((s)] + v(s) (36)

The state equations (31) also simplify in an obvious way when AM =0. The term
e, in (33) and (36) represents unknown time varying excitations arising from a
combination of both external disturbances and errors of model order. When AG(s) is

assumed zero, some attention has been paid in the literature [16] to the determination of

upper bounds on e, which can be tolerated before losing stability. In these studies, the
AG(s) term in (34) and (36) has been ignored in the control design. See that u(s)
multiplies AG(s). Hence, it should be emphasized that the effects of model error e, in
(18) cannot be assessed independently of the control law u(*), and this is the fundamental
pitfall that prevents the modeling problems and the control problems from being
separable.

It is also common to analyze the effects of AG(s), but ignore the effects of e (s) in
(34),(36) [17-18]. However, these terms both coexist in the presence of errors in model

order. Imagine the physical process z(s) = [G(sHAG(s)Ju(s) + e,(s) and a model G(s)
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which might be used for design of the controller H(s). See Fig. 5a. Control theory has
reached a sophisticated level of maturity asswming that the model G(s) + AG(s) is
specified a priori, or, if not given, then the assumption is that the model is something
that exists in an absolute sense irrespective of the control policy (which is yet to be
developed). The thesis of this paper is that the model and the control policy must be
developed together and that no meaning (in an absolute sense) can be attached to either
one in isolation. These concepts do not readily lend themselves to established definitions
of robustness, or to certain identification concepts.

In the time domain characterization of the model errors, the parameters P;, Q; in
(29)-(31) are key. In the frequency domain characterization of model errors, the
spectrum AG(jw) and e(jw) in (36) are key. Which is easier to approximate or
parameterize in practice? We cannot say. H™ methods reiy on a characterization of
AG(w), e,(jw), [17, 18, 20, 21, 25]. This is never possible exactly, but neither is an exact
determination of P;, Q; in (31). One available method does not need either the frequency
or time domain characterization of modeling error, but only needs a geometric condition
about the space of the model error vector e, in (18). If e, lies in the column space of B,
(a "matching condition") then only an upperbound on e, is needed and not its spectral
content [22]. The matching conditions are easily violated in problems with errors of
model order. Yedavalli [23] shows bounds on each elcmcnt' of the A matrix
perturbations which preserve stability.

We cannot associate gain and phase margins with tolerance of any one of the four
categories of model error in (19), although errors in model order (x # 0) will certainly
modify the phase of the system. It can be said (without any sort of precision), that larger
phase margins may allow the design to be less sensitive to errors in model order. Gain
margins on the other hand do not necessarily provide tolerance to either parameter error
or model order error. Refer to Fig. 5 and AG(s) to see that the Nyquist test for stability is

satisfied if over all frequencies @, the full length of the vector 14+HG(jw) is larger than
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the length of the vector HAG(jw), since the -1 point cannot be encircled in this case.

Hence, a sufficient condition for stability is
1+HG(jw) > HAG(jw) for all w
or
1> [1+HG(w)]"(HAG(w)], for all ® (472)
This condition may be extended to the matrix case as follows, [11, 14, 15, 18],

1> max A {[I+HG(jw)] 'HAG(jw)) . (47b)

where A{-} denotes the square root of the largest eigenvalue of matrix {(*)*{}. Note,
however, that this can be an extremely conservative condition, since it is possible for the
vector HAG(jw) to be much longer than 1+HG(jo) without causing an encirclement. See
Fig. 5b for a stable situation which violates (47). However, a more fundamental
limitation of these results is due to the fact that Fig. 5a does nor describe most physical
situations if the e(s) term in (35), (36) has been ignored. The significant term e, is
composed of the same source of errors which make up AG(s), (See that J(s) is a model
order error term which appears in both egns. of (35). Hence, the above stability results
are exaemely conservative and they ignore e (s). Therefore they do hot readily extend to
include performance guarantees. Stability is the most studied subject in control, but

stability is usually not sufficient for successful operation.

CRITICISM OF THE "MODELING PROBLEM"

The traditional idea of the "modeling problem" is as follows:
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The Modeling Problem:

Find a set (or a class) of differential equations Sy describing the dynamical
relationships between the response z(t) and the (unspecified) inputs {controls u(t),
disturbances w(t), and initial conditions}.

The flaw in this task statement is the presumption that there exists a set of
differential equations which relate z(t) and u(t), irrespective of u(t). We argue that any
set of differential equations §, is only an approximation of the physical phenomenon S,
and it was shown in (28) that the errors associated with this approximation cannot be
assessed, qualitatively or quantitatively, independently of u(t). In other words,
knowledge of the control inputs u(t) are required in any assessment of model fidelity. In
modeling and identification literature it is common to talk about model errors with
respect to a fruth model, S. There is no truth model (S, #S,). The model and its

controller should be discussed as a pair. They have no significance separately.

CRITICISM OF THE "CONTROL PROBLEM"

The traditional idea of the "control problem"” is as follows:

The Control Problem:

Given the set of models Y, which describe the dynamical process, find an
appropriate control u(t) or controller u(z(t),t) to meet a specified set of control
objectives.

The flaw in this task statement is the presumption that the class of models 3 which
appropriately describe the process exists independently of knowledge of u(t), or
consequently, of knowledge of the controller generating u(t). Now the control law cannot
logically be specified prior to model development. Thus, if one wishes to squeeze the

best possible performance from the controller design, then one cannot ignore the
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MODELING PRINCIPLE V:

The modeling and control problems are not separable and are necessarily

iterative.

This means that for any given G(s) + AG(s), in Fig. 5 the development of a G(s)

and H(s) is an iterative process.

(a)

(b)

(b1)

(b2)

(b3)

Several implications of the modeling and control inseparability principle are:

The phrase "model of the plant” is a misnomer. We must refer to a model as being
appropriate under the influence of a particular controller. Hence, we must refer to
a (model, controller) pair as appropriate or inappropriate for each other, with

respect to a given plant.

Only "local" properties can be stated concerning the model and the controller.
This means that the interpretation of both classical and modern control theory must
be tempered with this knowledge, since parameters of neither plant model nor

controller can be taken to infinity (or wide ranges). Three examples follow.

The Root Locus theory presumes a fixed plant while the controller gain goes to
infinity. But the fidelity of the plant model depends upon the control gain. Hence,
the same model of the plant is not appropriate at both the vicinity of the open loop
poles and the open loop zeros, and a given root locus plot is never reliable in the

vicinity of both the open loop poles and the open loop zeros.

The Nyquist plots are reliable only over a limited frequency range and certainly
not reliable in the vicinity of the origin, where @ — oo, If &is region of uncertainty
extends to a unit radius around the origin, then even the stability results of the

Nyquist plot are suspect. See Fig. 6.

In LQG theory it is presumed that the model is fixed and that the weights in the

performance index may be varied over wide ranges. This generates the theoretical
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predictions of maximal accuracy in Fig. 7 (solid curve). However, the actual
performance follows the dotted curve, due to modeling errors (note the decreasing
effect of modeling errors as the control effort decreases). Thus, the deviation of
the actual performance from the theoretical is grearest where maximal accuracy
predictions are made. Hence there is often a large discrepancy between achieved
and predicted maximal accuracy, and large errors in the value of the control effort

at which maximal accuracy occurs. These inequalities always hold, from (9¢, 9d).

2 2 2 2
U, <y, Ya > Yo -

The class of all stabilizing controllers for a given plant model is described in
[25] and its references. The advantage of this knowledge is that the total design
freedom is characterized for accomplishing performance beyond stability.
However, the given model might not accurately describe the plant over "all
stabilizing controllers (for the given model),” due to MODELING PRINCIPLE V.
Hence, the "robust controller” based upon the given model might actually
destabilize the actual system due to the fact that when the observer based controller
is far away from its nominal design (for the given model), the model that
accurately portrays the plant is not close to the given plant model. Much more
work is required to capture the class of observer based controllers which allow
appropriate changes in the model as a function of the controller.

A "three-model" control theory would serve to keep control designs honest:
Model 1: an Evaluation Model used to simulaté the real system (until prototype
testing is available); Model 2: a high order model for' anlytical predictions of
controlled performance; and Model 3: a low order model for control design.

"Honesty" is maintained by maintaining distinction between the three
models. Model 2 can never be equal to model 1 due to Modeling Principle IV.

Model 3 must change as a function of controller design due to Modeling Principle
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V. Dangerous (faulty) prections occur whenever any two of these models are
coincident, for in such cases control design mathematics can easily use high gain
controllers to achieve a high level of performance without paying the (inevitable)
penalty for modeling errors, see conjecture (9). See the "Controller data base” S,

S1, S,, in Fig 6a.

4.0 The Structure of Errors in The Closed-Loop System
Suppose our hypothetical "physical system" (1) is now driven by the linear

dynamical controller with transfer matrix H(s)
u(s) = H(s)z (s) 37
Without loss of generality we may associate a state space realization with (37) and write
H(s) = GGI-A)™'F (38)
or in state form

X, =AXx. +Fz, x.eR™

39
u=Gx, , TUueR™ 9

In this Section we ask how the poles of the closed loop system behave as either G or F
approaches zero. Next arbitrary gains G and F are considered but with a restrictive
assumption about parameter errors (cp =0). It will prove convenient to write results in

terms of a set of nonzero auxillary matrices (A, B, M) which can always be found
satisfying

A+BG-FM2A4, (40)

for any given A, G, F.
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5 e, AG(s)

G(s)
S.(5,(S,)) e

S.(S,(S, )}

Fig. 6a Controller Data Base
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The system (13) is now driven by conwroller (21). Subtract (39) from (17). This
gives a differential equaton for iéXR"Xc. Now writng (13), (39) in terms of the

states x and X yields the homogeneous part of the closed loop system

x A +BGEy [ -BG x
:| = | (Ap—FM)Eg; + (AA-FAM+ABG)E, (| A — FM - ABG| | & (41)

X
y C IO x
[U] = I:GEIO —GJ [i]
A A
where E; = [I, 0] and Eg; = [0, T]-

In the limit as G — 0, the eigenvalues of (41) become those of the block diagonal

matrices A and A - FM. This conclusion is summarized as follows.

Theorem 1: In the limit as G = 0, any linear system (13) driven by any controller of the
form (38), has the eigenvalues of A and (A — FM).

Theorem 1 suggests that the low gain controller (characterized by small G) is
stable if the open-loop system is stable and if the matrix (A - FM) (which is entirely
under the design of the analyst) is stable.

Now multiply (39) by E,, then subtract this equation from (13). This defines the
vector X £ x—Eiroxc. The homogeneous part of the closed loop system (13), (39) can now

be described in terms of states X and x,, yielding

! [A — EJ}FM |EJ,(AA+ABG-FAM) +ElA ’I'R""BTG)] [ x—}
= ‘ @2)

% 17V A +BG +FAM c

-
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In the limit F — O the eigenvalues of (42) become those of the block diagonal

matrices A and A + BG. This conclusion is summarized as follows.

Theorem 2: In the limit as F — 0, any linear system (13) driven by any linear controller
of the form (39) has the eigenvalues of A and (A + BG).

Again, the reader is reminded that A + BG is under the design of the analyst.

For further insight into the effects of modeling errors suppose that the gains G and
F are not small, but the parameter errors are zero (AA =0, AB = 0, AM = 0). Then the

following is true.

Theorem 3: In the absence of parameter errors (AA =0, AB =0, AM =0), the closed-
loop system eigenvalues are those of (A—FM), A1, and (A +BG), if xt is either

uncontrollable or unmeasurable.

Proof: Lettng (AA =0, AB =0, AM =0) in (42) yields

% [A -EFOFM|E$<ATR+B1G)] P
=l M | A+BG X,

- e

C

The block diagram of the homogeneous part of the closed-loop system using the notation
of (15) and (39) is given in Fig. 8. Using the definitions of E,q and Eg,, (43) is further

expanded as follows.
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x-R AR-FMR‘ART—FMT: 0 fR
%y| = -'fIR_Ml__'.‘.T__ (A + B1G| | £ (44)
ic FMR FMr + A+BG Xc
X
y CRlCT:CR R
o =l oloig||*T
X

We shall first let x7 in (15) be uncontrollable. This is equivalent to the statement that
(Atr =0, Bt =0) in (15) and in Fig. 8. (Recall the controllable canonical form). This
makes the upper right matrix of (44) zero (using the dotrted line partitions). In this event
the eigenvalues of (44) become those of (A+BG) and those of the upper left block matrix,
(using again the dorted line partitions). But since Ay = O this upper left matrix is now
also block diagonal, and therefore has the eigenvalues of (Ag-FMpy) and Ar. In the
absence of parameter error Ag = A, Mg =M and the first part of the theorem is proved.

For the second part of the proof let xt in (15) be unmeasurable (unobservable from
the measurement z). This is equivalent to the statement that (Agy = 0, Mt = 0) in (15)
and in Fig. 8. (Recall the observable canonical form). This makes the upper right matrix
of (44) zero using the solid line partitions. In this event the eigenvalues of (44) become
those of (Agr—FMy), and those of the lower right partiton, again .using the solid line
partiions. But since M1 = 0 this lower right matrix is now also block diagonal, and
therefore has the eigenvalues of At and (A+BG). Now in the absence of parameter
errors Ag = AR, Mg = M. This gives the same set of eigenvalues (of (A-FM), A, and
(A+BQ)) as in the first part of the proof. Hence, the theorem is proved. #

A clear discussion of the concepts in Theorem 3 first appeared in [29] using modal
coordinates and the phrases "observation spillover” and "control spillover”, (signals "a"
and "b" in Fig. 8 respectively). While such phrases are descriptive, they disguise the fact

that the "controllability” and “"observability” of the states they xt are the important
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concepts. Hence, we prefer the standard "controllability, observability” description of
the phenomenon to the phrase "spillover”.

Theorems 1 - 3 suggest that it is important that the matrices {(A-FM), (A+BG),
At} be asymptotically stable, and more significantly, that this conclusion remain
independent of the methods by which the controller parameters (A, F, G) were derived!
(Notice that the optimal LQG controller stabilizes (A-FM), (A+BG)). Suppose the
controller (39) was designed based upon the assumed model (A g, My, BR) so that this
modei had certain desired behavior in the closed loop. Fig. 8 makes it clear that, in the
absence of parameter errors, the fundamental cause of deviation in system behavior from
predicted behavior is the relative degree of controllability and observability of the states
x1. While controllability and observability prove to be of great benefit for control in the
absence of model errors, complete controllability and observabilty would be a serious
handicap in the real world. Control designers are indeed forrunate that most of the
"deleted states” associated with "real world x" are uncontrollable and unobservable.

Otherwise there would be even fewer successful control designs to celebrate in practice.

Modeling Principle VI: (Uncontrollability and Unobservability of Dynamic Systems)

Using any number of sensors and actuators, the physical plant will not be
completely observable nor controllable.

This proposition requires some explanation since observability and controllability
are mathematical properties associated with a2 mathematical model, whereas the "physical
plant” defies exact description by any mathematical rhodcl. Suppose one improves a -
given mathematical representation of the physical plant by adding additional dynamics
which were originally ignored in the model. As one continues this process, adding more
and more details so that the new model more accurately models the physical plant, the
mathematical model eventually becomes both uncontrollable and unobservable. In other

words, an uncontrollable, unobservable model can always be constructed to provide a
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closer representation of the physical plant than any controllable, observable model. It

takes little convincing to see that this argument is correct. Taken to an extreme it is
perhaps obvious that the molecular motions in an aircraft wing or the seat cushion
vibrations in the aircraft cannot be controlled by aileron actions nor observed by rate
gyros. However, one need not resort to such extreme examples, using infinitesimal
effects. Note that the example in Fig. 9 describes an uncontrollable system, and the
uncontrollable part is a nontrivial part of the system dynamics. The control is the torque
applied to the reaction wheel.

Recall that if (A,B) is controllable [or (A,C) is observable] then A is
asymptotically stable if and only if there exists a positive definite solution to
0=XA"+AX+BB" [or to 0=KA+A"K+C C]. The important impact of the lack of
observability or controllability is that the stability proofs which rely on observability or
controllability cannot be used to assure that the physical plant will be stable. Indeed,
stability is a mathematical concept relating to a mathematical model, and hence the
physical plant can never be proved stable by mathematcs. (Due to the fact that the
physical plant defies exact mathematical description, and the amount of modeling
precision required to predict stability is not known a priori). We can only say that the
model is stable subject to a given range of parameter values, or a given magnitude of the
model error vector e,, etc.

Modeling Principle VI seems to be at odds with the notion of generic
controllability, observability [24]. This result [24] states correctly that adding arbitrarily
small numbers to every element of (A,B,C) will make the matrix triple controllable and
observable. Hence, the notion of generic controllability, observability suggests that
physical systems (such as Fig. 9) are arbitrarily "close" to observability controllability.
This is consistent with the view of at least half a dozen control texts which state
emphatically that all real world plants are controllable and observable. But the additon

of arbitrarily small numbers in every element of (A, B, C) is a mathematical exercise that
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has no basis in the physics of the problem and cannot describe physical behavior. For the

physical system in Fig. 9, a control which can simultaneously regulate both 6(t) and y(t)
to arbitrary values would contradict the conservation of angular momentum. Hence, we
can safely claim that this system is arbitrarily "far" away from controllability rather than
arbitrarily "close" as the notion of generic controllability suggests. Rather, we should
interpret the generic controllability result as good reason not to believe computer
calculations of controllability, observability, since roundoff errors are the equivalent of
adding small errors to every element of (A, B, C), as in the thesis of generic
controllability, observability. A common reaction of those that insist that physical
systems are state controllable is "Who would design an uncontrollable system?”
Actually, it is impossible to do otherwise. The physical system will always be
uncontrollable (and that is good news not bad news), but we should not discard the
uncontrollable part in the control design process. This is verified as follows.

It can be shown that the stable, uncontrollable, observable system
Ay Al 1xg B,
0 Azz Xz + 0 u

X1
y= [C1 0] Xy

Xy

X2

minimizes
V=] “(y"Qy + u"Ru)dt
with the control law
u=G;x; +Gyxy

where G, is the standard state feedback gain for optimizing the plant (A,;, B,, C;) and
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G, satisfying 0=KA,, + [A}; + B)G,]TK + KA 2, G, =~R™'BTK depends upon (Ag,

Ay,, By, G)) and is nor zero unless x, is unobservable in y. Hence, the often heard
argument "the uncontrollable part of the system should be deleted since we cannot
control it" is faulty logic. The optimal controller (or any other reasonable controller) will
alter its control of x; (the controllable part) with the knowledge of the dynamical
interactions between x; and x,, even though x, itself cannot be controlled. For example,
the minimal energy optimal control that pushes x; toward a certain desired value X,
might be zero if the dynamics between x; and x5, are such that x; is naturally (without
control action) driven toward X;. If x, were deleted a priori the optimal control would be
greater than zero, hence not optimal for the complete system.

To illustrate the relatonship between controllability observability and stability

consider the second order system in modal coordinates.
I.R A R 0 XR B R
ir| TL O Aqflxg) T[Bg ™ 2= (Mg Mr)x

Note that mode xp is observable (controllable) if and only if My # (B1#0). Now

consider any first order controller
u(s) = H(s)z(s)
where
H(s)=G(sI-A)"'F
and where we have chosen to describe A, in the form
A, =AgR+BgG-FMy

where G is chosen so that
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AR+BRG <0
and F is chosen so that
AR"FMR<0-

The necessary and sufficient closed loop stability requires the product of controllability
and observability of x to be limited by

1

IMcBrl < |lApg~FMpl 1A+l |A 4B Gl —————
MrB1 RFMpHAT!HARBRG T

(46)

This simple third order example provides important insight into the necessary and
sufficient condition for stability. The closed loop will be stable if the neglected part is
unobservable (M1=0) or uncontrollable (Bp=0), as promised by the sufficient
condition, Theorem 3. But (46) also shows the upper bound on IM B!l which will
allow stability even if M1, By are not zero. Hence, the right hand side of (46) is a
measure of the conservatism in Theorem 3, and this measure is a function of both the

modeling errors (At) and the control gains (G, F).

Control Design Considerations: (Trading Stability and Performance)

Practical control designs always require some iteration or some fine tuning during
experimentation with the real hardware. There are two fundamentally different strategies
for these two phases of design. These strategies diffcr by the manner in which they

handle stability and performance concerns.

The Stability Design Scenario:

Design phase A: Design for stability

Design phase B: Tune for performance.
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The Performance Design Scenario:

Design Phase A: Design for performance
Design Phase B: Tune for stability

"Stability Design" includes (i) guaranteeing specified gain and phase margins by
root locus, Bode, Nyquist, (ii) designing by pole or pole region assignment, (iii)
designing by Liapunov techniques, (iv) designing by H™ techniques, etc. "Performance
Design" includes satisfying input or output variance (or L,) bounds, perhaps by optimal
control.

Phase B is intended to be a simple gain change. In the "Stability Design" scenario
the gain is usually tuned up a bit to improve performance without destroying stability. In
the "Performance Design" scenario the gain is usually turmed down a bit to imiprove
stability margins while maintaining acceptable performance.

Of course, the design tools have been oversimplified in these scenarios, in order to
draw distinctions among points of view. There are circumstances where each scenario is
preferred. In some situations in the Stability Design scenario, adequate performance may
be impossible to achieve by a simple gain change in Phase B. In this case the
Performance Design scenario is preferred. In some situations with the Performance
Design scenario, adequate stability margins may be impossible to achieve by a simple
gain change in Phase B. In this case the Stability Design scenario is preferred. An
overwhelming proportion of control literature has focused on szability to support the
Stability Design scenario. However, as society demands more performance in modern
systems, the development of practical and theoretical tools which focus more on
performance will strengthen the Performance Design scenario. ‘

Stability and performance are competing partners in the design process. They
usually do not naturally cooperate. Improving one usually (but not always) degrades the
other, and good tradeoff methods are needed from the research community. In fact, there

are many examples where stability, performance, and sensitivity are three competitors in



the design process, where design changes that improve one of the three necesarily

degrades the other two. Modeling and control design theory has not yet provided a
convenient and practical tradeoff among these three design goals. Part of the problem is
lack of an agreement about what kind of sensitivity, stability, and performance measures

to use. For example, in [33] we have the following conclusion

Theorem

Let X, i=1,2,..,m, denote the distinct eigenvalues of A. Define a measure of root

sensitivity by

sdy n-g-;iu , M= .

i=1

The lowest bound on root sensitivity is S2n and S=n if and only if A is normal,
(AAT= ATA).

3 Im A
A

. . dRe )
Similar results are available for Il 3A i, 1

For a simple pitch control problem for an aircraft it was shown in [33] that minimal root

Il types of sensitivity [34].

sensitivity in the closed-loop system is achieved (that is, normality is achieved
(A‘:A,;r = A:Ac, Ac=A A+BG) only at values of G which were destabilizing.
Furthermore, as a design objective a "nearly normal” objective can be added subject to
performance or stability constraints. In this event the design can depart arbitrarily far
from minimal root sensitivity (even though the design is "nearly” normal). This is due to
the fact that the "abnormality" measure & 4 HAAT-ATAl can be a convex function of
the parameters in A, even when the sensitivity measure S is not. This means that "nearly
normal” does not mean "nearly minimally sensitive". The "nearly normal” design
objective has been widely used in both frequency and time domain designs. It has
popular appeal due to the fact that symmetric matrices are normal, easy to work with, and

have orthogonal eigenvectors. However, such examples in [33] point out that while
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‘normal matrices (or orthogonal eigenvectors, or symmetric matrices) coorespond to

global minimal root sensitivity, a "nearly normal” design goal is suspect since "nearly
normal” does not coorespond to "nearly insensitive”,

Since root sensitivity is not easily incorporated in designs that minimize other
types of performance, some authors seek to incorporate different kinds of response
sensitivity. The max entropy approach of [30] minimizes an L, norm of the inputs and
outputs while modeling the uncertain parameters as zero mean white noise. This leads to
two Riccati-like plus two Liapunov-like equations to solve by iteration. A case study of
this approach is presented in [32], by comparing it with a different optimal controller,

one that minimizes the L, norm of nominal performance plus a weighted L, norm of

. ... pou oy . .
input and output sensitivity I==II, I ZLli2 where p is the vector of unceriain parameters

dp dp

(not random). These conclusions emerged from these case studies (comparing methods

[30], [31], and [32]):

@) Presently method [31] cannot treat uncertain parameters appearing in the
measurement matrix, method [30] cannot treat parameters p; appearing both in B

and C, while method [32] can do both.

(i1)  Presently method [30] cannot treat parameters p; appearing nonlinearly in (A, B,
C), while methods [31] and [32] require only differentability of (A(p), B(p),
C(p)) with respect to p.

(iii) When comparing L, performance of inputs, durputs with stability margins, the
case studies favored the results of method [32] over rhethods [30] and [31] in
most cases studied, but ranked the results of method [32] equivalent to the results
of method [30] in two of the cases studied.

Case studies should be encouraged in the areas of robustness and model error

compensation since applicable theory is quite limited, and case studies can point the way



'VI) The physical plant is always unobservable and uncontrollable (fortunately).
The impact of each of these principles is discussed to explore limitations of
available theory. An understanding of these principles can aid in the search for

successful control designs and for improved "robustness" definitions.
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A Sensitivity Controller For Uncertain Systems

Kenji Okada and Robert E. Skelton

Abstract

In this paper a new controller design, which we shall call the "Trajectory
Sensitivity Optimization" method is presented to improve the robustness for parameter
variations. The method uses the sensitivity trajectory to model the parameter uncertainty
and introduces a special quadratic cost function involving an input and output sensitivity
term.

Necessary conditions are derived to obtain the dynamic controller. The necessary
conditions consist of two Lyapunov equations and two controller gain equations which
have no closed form solution. Therefore a special iterative algorithm was developed to
obtain the numerical solution.

The method can deal with a wider class of parameter uncertainty than existing
methods. Numerical examples show that the method is effective in improving the

robustness to parameter variations.

1. Introduction

The LQG theory is well established as a multivariable control design synthesis, but
it suffers from a poor sensitivity to certain classes of plant parameter uncertainty [1}.
This scnsitivity problem for parameter uncertainty becomes extremely important in
flexible structure control where there is large parameter uncertainty. To cope with the
problem various design syntheses have been proposed.

We are motivated by the trajectory sensitivity approach of Yedavalli and Skelton
[13] where the necessary conditions are described to solve our prf)blcm. By restricting
our attention to controllers of order n (equal to plant order) we will be able to make

further progress toward solutions.



The sensitivity controller proposed by Wagie and Skelton [2] uses a trajectory
sensitivity model to include the effects of parameter uncertainty and a special cost
function involving both an output and input sensitivity term. This paper shows how to
reduce the sensitivity model to tractable order, while preserving the correlations between
outputs and all their sensitivities. The main drawback of this sensitivity controller design
method is that the method does not deal with parameter uncertainty in the measurement
matrix.

The Maximum Entropy Method has been applied by Hyland and Bemstein to the
flexible structure problems [3]. This method uses a stochastic modeling for the
parameter uncertainty in order to improve the robustness for the parameter variation.
The design synthesis provides a direct method to the design of robust, reduced order
controllers in which robust controller design and controller order reduction are performed
simultaneously. The necessary conditions obtained by this method consist of two
modified Riccat equations and two modified Lyapunov equations coupled by stochastic
effects. Two restrictions of the method relate to the structure of the parameter
uncertainties permitted. The uncertain parameters must appear linearly in the plant, input
and output matrices. It also requires that the control-and-measurement-dependent
uncertain parameters are uncorrelated. Because of this requirement the method cannot be
applied directly to the problems in which there exists parameter uncertainty that affects

the control matrix and the measurement matrix simultaneously. The method also cannot
deal with parameter uncertainties in the disturbance matrix and in the output matrix.
This may cause the unnecessary degradation of the closed loop system performance.

The approach developed by Tahk and Speyer {4] is called asymptotic LQG design
synthesis. This method uses the internal feedback loop to model the parameter variations
and serves to improve the stability robustness and reduce the sensitivity to paramcter
variation. This approach is a generalization of the LQG/LTR technique introduced by

Doyle and Stein [S]. The approach has difficulties when there exist parameter variations



in the input matrix B or in the measurement matrix M. In this case the method requires
augmentation of the state space so that AB and AM are embedded in the state matrix of
the augmented system. This augmentation of the state space eventually leads to the
increase of controller order.

As explained so far, the existing robust controller design methods for parameter
uncertainty have some restrictions on the structure of parameter uncertainty. Hence, the
main purpose of this paper is to propose a new robust controller design synthesis which
can deal with wider classes of parameter uncertainty. The proposed method uses
trajectory sensitivity to model the parameter uncertainty and introduces the special cost
function which includes the output and input sensitivity terms in addition to the nominal
input and output cost. The controller parameters are determined such that the given cost
function is minimized. Through this minimizaton procedure, the controller obtains a
robustness property with respect to parameter variation. The fundamental idea of this
method is the same as the Wagie, Skelton Method, although the approach to obtaining
the controller is different.

. This paper is organized as follows. Section 2 discusses the modeling of parameter
uncertainty using a trajectory sensitivity model. Section 3 introduces the newly
developed "Trajectory Sensitivity Optimization” method and provides the necessary
conditions for the sensitivity reducing controller and the algorithm to obtain the solution.
Section 4 deals with the numerical examples to demonstrate the ci‘fcctivcncss of the
proposed method and provides performance comparisons with other design methods.

Finally Section § contains conclusions.

2. Modeling of Parameter Uncertainty

2.1 Trajectory Sensitivity Model




In this section we derive the trajectory sensitivity model for a simply supported
beam example which will be used in the numerical example in section 4.

Assume there are h uncertain parameters p;, ps, * * *, Py, and a space-state model of

the system is given by

x=A(p)x + B(p)u+D(p) w .1
y=C(p)x (2.2)
z=M(p)x+v (2.3)

where x, y, z, u, w, and v are respectively, state vector of dimension n, output vector of
dimension k, measurement vector of dimension [, input vector of diménsion m, zero-
mean white noise of dimension d with intensity W, and zero-mean white noise of
dimension ! with intensity V, and p is given by p=[p;, p3. ** °, ph]T

Then the resulting sensitivity system can be expressed as follows:

L%, = A, +B,u, + D, w, 24)
Ys=Cyx, (2.5)
Zy=M, X, + v, (2.6)

where:

X y z u | v

X, = xp v Y5 =T Yp v Ly = Zp s Ug = "p v Wg=W, V= 0

A0 _ B O CcC o D M 0

M=la, A] P78, 8] ©lc, ¢ P o MM, m
[712 block diag ([ ],**~ [+ 1)
[-l,é[aL'IT...a['lT}T

dp, JIpy

where the matrices A, B,, C,, D,, and M, are evaluated atp=p (nmﬁinal vector value of



p). The basic idea to improve the robustness for parameter variations is to use a cost

function Vp given by
T TRy 2 ™ (T, T
Vp=E.[y Qy+u'Ru+ ¥ (ypiQiyui + upiRiup)l 2.7)
i=1

where yT'Qy + uTRu is the part of the cost function for the standard LQG design, and

h
Z(y;Qiypi + u;;Riupi) are added sensitivity terms. We seck a controller which minimizes
i=1

the cost function V. Then the sensitivity of the controller to the parameter uncertainty
p; is reduced in increasing the norm of weighting matrices Q; and R;.

The nominal LQG controller is obtained by setting Q;, R; to zero, and a controller
which minimizes sensitivity only (neglecting nominal performance requirements) is

obtained by setting Q, R to zero.

2.2 Trajectory Sensitivity Matrices for An Example

In order to construct the trajectory sensitivity matrices A, B,, Cpr Dy, and M, for

the physical system, we deal with an Eulimply supported beam shown in Fig

1. This example, is used later for sensitivity reducing controller design. In this example

we take the following three quantitics as the uncertain parameters,
(1) p : Mass Density of Beam (per length)
(2) EI : Flexual Rigidity of Beam

(3) K, : Actuator Gain
It is well known that the natural frequency ®; and mode shape 'V (r) for i-th mode

of a simply supported beam are given by



(L: Length of Beam)
If we assume a torquer at r =r, a linear displacement measurement sensor at r =r,,,, and

a linear displacement at r =r, for the output, then we obtain the following equations of

motion:
) iii+2cimiqi+0)l2qi=bi(u+w). (i=1,.... n)

n
y =K, )= Z \yi(ro) qi

i=1
n
z=U(ry,, ) +v=Y¥(r)q+v
i=1
where: b, = Q,(r) = -a-‘{’-(r)l = -ii‘\ ’— cos(ir/L)r,
1 i ar 11 =ty L pL
If we choose the state variable x by x = [q7,G")7, then the above equations can be
transformed into the following state-space expression.
x=Ax+Bu+Dw, y=Cx, z=Mx+v
where |
0 I .
A= —Q? -0 Q =diag (@, **.w,] : scaler
B=[0+++0,(r) D, (r)IT2{0 BT|T
C=[¥(r,):--0---0]2(C, 0]
D=B
M= [¥,(r) W (r) 0-+- 0] 2 (M, 0]

Using the above plant model, we obtain the following trajectory sensitivity matrices Agis

Byi» Cpis Dpi. and M, for the three uncertain physical parameters.



o Uncentain Parameter _p : pl:#— pi1=1
NOM

0o 0 0 )
A= Qfom {Qnowm| Bn=| 1 » o= -E(CY)NOMO

"'E(Bu)NOM

Dp =By . M = [_"'(My)NOM 0}

EI -

e Uncertain Parameter EI : p;= m » P2=1
['QNOM 'QQNOM]
=0, = DPI =0 Mp; =0
KI -
e Uncertain Parameter K, : p3= -(—g—- , ;=1
NOM

A,=0 B, =B C,=0 D,=0 M, =0

3. Trajectory Sensitivity Optimization Method

In this section we introduce our controller design synthesis which reduces the
sensitivity to parameter variations of the plant, using the trajectory scﬁsitivity derived in
section 2. The basic idea of this method is similar to that of the Wagie and Skelton
method {2], but the advantages of the new method are: 1.) The order of the controller
(the number of states) obtained by this method is smaller than_ that of the Wagic and
Skelton method. 2.)The method can deal with a wider class of parameter uncertainty
than the Wagie and Skelton method (The Wagie and Skelton method cannot deal with

the parameter uncertainty related to measurement matrix. i.e., Mp term)



The method has these advantages over the Maximum Entropy Method: It can deal
with (a) parameter uncertainty in a nonlinear manner, (b) parameter uncertainty in the
disturbance matrix D and the output matrix C, and (c) parameter uncertainty appeared
both in control matrix B and measurement matrix M at the same time. The advantage of
the Maximum Entropy Method is fewer equations to solve. Some discussion of the

convergence of the method appears in [12].

3.1 Problem Statement

We consider the following problem.

For the system

e n-th order Plant:

x=A(p)x +B(p)u+D(p)w (3.1)
y=C(p)x (3.2)
z=M(pp)x+v (3.3)

where,

E(w®OW(D)T) = W8(t~t) E{v()v(t)T} = V5(t-1)
E{w(®] =0 E(v()}=0

Pp=(p1. ***,py) Uncertain Paramcters

The n-th order Controller is:

u=Gx, , (3.4)
x. = A°x. +Bu+F (z-M°)
=(A°+B°G-FMx +Fz (3.5)

where,



A°=A(p) B°=B(p) M'=M(@p)
p : Nominal Value of p

% _o S g G=1,....h)

op; ap;

Find F and G such that the cost function Vp is minimized.

2 fal) o

T e B [[ay)TA[3
oo nes [ 2] 2] o[22

i=1 ap;

If we set B; = Ba;, where 6;= 1 Ap; | is the magnitude of the expected variations in p;,
then we need only to determine B, Q, and R as design parameters. The weight B is
usually determined through tradeoff between the robustness to parameter variation
and the nominal performances of input and output cost. the weights Q and R may be
determined under nominal conditions (o; = 0) to satisfy E_y?2 < o2, for a specified C;,
i=1, 2, ..., n, while minimizing u'Ru. The algorithm for such weights is given in

chapter 8 of [10].

3.2 Derivation of Necessary Conditions

Let

%=x - x, | G

then the equations for the closed loop system are given by

% = (A-FM)& + ((A+BG-FM) - (A® + B°G-FM°®)) x_ + Dw — Fv (3.8)
Xc =FMR + [A® + B°G + F(M ~ M%)} x, +Fv (3.9
y=Cx+Cx, (3.10)
u=Gx, 3.11)

The above equations are transformed into the following matrix forms:



X, = A, X, +D,w,
y=Cux,

u=G,x,

where :

[ A-FM (A+BG~FM)—~(A°+B°G—-FM°)
A= M AS+B°G+F(M-M®

.

D.=|, F] C,=[C C] G,=[0 G]

N

Let
x,=[iT x: i;,rl xc".....,i;rh x;r_]T
y,=[yT ut y;,rl u;l,....y;;, u;,rh]T
w,=[wT vI)T

then the closed loop sensitivity system is expressed by

X, =A,x, +D,w,

Y. =G, x,

where

10

(3.12)
(3.13)
(3.14)

(3.15)
(3.16)
3.17)

3.1%)
3.19)



1
-Ao o0 --- oq
AjAg 0 -+ 0
A=|1 0 A - 0 (3.20)
8 0 0 e g
AG-FM@ O
A=AP=| MG AGHBEG @21
R 3(A) Api(PrFM(P) AL(Pr+BL(P)YG-FML(P) 322
T | M) FMu(®) 022
(=1, ... h)
. [c c oo . 00
]
13 ‘: 0 G0O0..00
CiCyCC..00
D,; 0
0 00G.. 00
D,={ 0 0}, G=}: : :: Do (3.23).(3.24)
Dgho ChnCw 00 ..CC
L 0 0] |0 000..0G

From the triangular structure of A, in Eq.(3.20) note that the poles of the
closed loop sensitivity system given by Eq.(3.18) are equal to those of the closed
loop system without sensitivity states repeated (h+1) times. Therefore if the closed
loop systemn is stable at p=p, then the closed loop sensitivity system given by Eq.
(3.18) is always stable. '

The steady state covariance is defined by
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[ ooT =T < - 7
34 ixc'r XX xle xx{,';, iphx;r_
T 5
xch XXe XcRoy ch;r,. xcxg;, xcx;‘;
X,=E.(xx;) =E. : : (3.25)
.
Ronfoh Koo
=T
S, Y. M xR XX
then X, is obtained as the solution of the following Lyapunov equation:
AX,+XAT+DWDI=0
where :
w0
We=io v 3.27)
using the above X,, we can express the cost function Vp by
Vp=tr[X,CTQ,C,] (3.28)
where : Q, = block diag(Q, R, B1Q, BiR, .. .. BrnQ. BwR) (3.29)

By augmenting the constraints (3.26) to the objective functions (3.28) by use of

Lagrange multipliers, we introduce H given by
H=1r [X,CTQ,C,| + r [K(A, X, + X,A + D, W,D,") (3.30)

Then the solution to the problem satisfies the following conditions:

H _

oH _ 0 (3.31)

OH . 9H _
oX, 0 =0

0 K, = oG oF

Relying on standard matrix calculus, the following necessary conditions are

derived:



e 0 0. KA+ATK,+CTQC=0
X,
dH
. 'é"x','=° A X, +X,AT+D,W,DT=0
+1 h
* -3% =0: G=-R"(BT LKaXu+ T Ba(KynXp)
k=1 k=1
h
X[Xu + EBkXde-l.Zkﬂrl
k=1
h+l
) %}Fi =0: F= —(K“—Klz_](irz + Kzz).l [ E(KZk"KZk_l)X&_I }MT
k=1

h
+ T (Koo 2-Kopa )Xy + XMV
k=1

where Kl' ooy th+2 and Xl. ey x2h+2 are defined by

K,=(K{ KT *** KhJ' K;:nx2n(h+l)
X, = [Xl Xz e x?_h-'-?.] Xi : 2n(h+1)xn

X;; and K;; are the (i,j) block of X, and K,

xl'l e s e xl'2h+2
X, = . Xj; : nxn
szmz.l cer X2he2 2042

Kl.l Kl.!ho-l

K, = CL : K;j; : nxn

LKIhQ.l oo Kons2ome2
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
(3.37)

(3.38)

(3.39)

As we can see in the definition of A,, A, contains F and G. Therefore the equations

Eq.(3.32) - Eq.(3.35) are coupled. However these equations can be solved

numerically by using the iterative method presented later in this section. Before

proceeding to the itcrative method, we investigate the Lyapunov cquations given by

Eq.(3.32) and Eq.(3.33).
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The size of the Lyapunov equations is 2n(1+h)x2n(1+h). Therefore if the
number of uncertain parameters is big, the equations may be too large to solve
directly. The structure of the equations, however, allows them to be solved in

partioned forms.

e Partitioning of the Lyapunov equation for X,

Let Z;; represent the 2nx2n matrix

. A[x2i-l.2j-l xzs-x.z,] 140
D7 Xaigir Xaigj (3.40)

and D;; be the 2nx2n marrices given by

| DWDT+EVFT ~FVET
DH = i _FVFT FVFT (3.41)
i T
, [PoiWDL,
D; 2 _ 0 0 (3.42)

(i21 j22 andj2i, D, 2D)
then Z;; is the 2nx2n block of X, in the ij position, and D;; is the 2nx2n block of
D,W,DT in the ij position. The partitioncd matrices Z; (j2i21) are obtained by

solving the following equations:

(1,1)block:  AyZy +Z;|Ad +D =0 (3.43a)
(1,pblock:  AgZy;+ZAf +Z AT, + D=0 (3.43b)
(G=2.....h+1)

G.j)block:  AgZy+ZAd + (A Zy+ ZJAT) + D=0

(2<sisjsh+l)
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Since the (1,1) block element given by Eq.(3.43a) is the standard Lyapunov
equation, it may be solved directly for Z,,. Substitution of Z;; obtained in
Eq.(3.43a) into the (1,j) block elements reduces Eq.(3.43b) to standard Lyapunov
equations. In a similar way the (ij) block (2 i < j S h+1) elements can be solved by
substituting Z,; and Z,; obtained in the previous calculations.

Therefore the Lyapunov equation for X, of order 2n(1+h) can be reduced to
the (h+1)(h+2)/2 Lyapunov equations of order 2n. It can also be shown easily that
cach partitioned Lyapunov equation obtained above can be partitioned further into
four sub-block elements of order n which can be solved separately in the sequence of
(1,1), (1,2), (2,1), (2,2) sub-block. Hence the total number of Lyapunov equations of
order n becomes 2(h+1)(h+2). However, from the symmetric property of X, the
diagonal block elements Z;; (i=1,...,h+1) are reduced to three sub-block elements of
order n instead of four sub-block elements. Therefore the total number of Lyapunov
equations to be solved is (h+1)(2Zh+3).

e Partitioning of the Lyapunov equation for K,

Let Y;; represent the 2nx2n matrix

(3.44)

A Kaic12-1 Kaicig)
v. 2
U Kzt Kaigj

and C;; be the 2nx2n matrices given by



, -

c, 2

(o

) LC‘.’I;-le‘IC Cp.Q-1C

c'eCc+ fc,{chh c'Qc+ ¥ CaQCy,
k=1 k=1
cTQC+ f; clQc, cTQCc+ f;c;Q,‘ch +G'RG
! k=1 k=1

ConQriC Cp. Qi C
2<jsh+l)

(cToCc CTQuC
(2<sish+l)

c"'Q,_,C C'Q,_,C+G'R;_,G

0 (2si<))
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(3.45)

(3.46)

(3.47)

- (3.48)

where Qg =B Q , Ry = ByR, then Yj; is the 2nx2n block of K, in the ij position, and

C;; is the 2nx2n block of C,TQ,C, in the ij position. The partitioned matrices Yj;

(j 2i 2 1) are obtained by solving the following equations:

G.i)block:  YjAg+AdY;+Cy=0 , (1<jsh+l)

(.j)block:  YyAg+AgY;+Cy=0 , (1<i<))

(1.pblock: Y Ag+AJY +ALY;+C;=0 , (2<])

(1,D)block: Y Ag+AJ Y + (YA + Yi3A 4+ Y A

+ (YIZAI + Y|3A2 + 4 YI.MIAH)T + Cll = 0 .

From Eq.(3.49) and C;; =0 (2 S i <)), we obtain

Y;=0 for [I<i<j

Therefore the structure of K is given by

(3.49a)
(3.49b)
(3.49¢)

(3.494)

(3.50)
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Yu Y2 Yi3 .o Yipn
BiYo O ... O
K, = B, Yy ... (3.51)
.. 0
i S. Y. M BnYo
where Y, is the solution for the following Lyapunov equations:
YoAq+Ag Yo+ Cy=0 (3.52)
CTQC CT
C Qc (3.53)

1~ | cTQc cTQC +G™RG

The number of Lyapunov equations to be solved becomes h+2 Lyapunov equations
of order 2n or 4h+6 Lyapunov equatons of order n. When we choose
By=PBy="--=P,=0, only the (1,1) block K, becomes non-zero. In this case it can
be easily shown that the equations for G and F reduce to the standard LQG

equations.

3.3 Algorithm to obtain the Numerical Solution

Since the equations obtained as the necessary conditions are coupled, a special
numerical algorithm is required. The approach taken is similar to that of the Wagie
and Skelton method. The algorithm is summarized as followed:

o Algorithm to obtain Fand G

STEP | Choose initial Fand G

(e.g. use the solution for the standard LQG problem)
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STEP 2 For the given F and G, solve X, and K, from Eq.(3.32) and Eq.(3.33) using

the partitioned Lyapunov equations.

STEP 3 Using X, and K, obtained in STEP 2, Calculate F and G. Set Fygw=F

Gnew =G

STEP4 If GNEW—GOLD | <e.and ] FNEW-FOLD | <&

then Stop :  Solution Completed. Otherwise set
F =Fygw@ + Forp (1 - @),
G= GNEWa + GOLD (1-a),

Return to STEP 2.
where a is the coefficient which dictates the convergence of the solution. Usually

0.2 - 0.5 is used as the value of a. But when the weight B; to the sensitivity part of

the cost is large, a smaller value may be necessary.

4. Numerical Example and PerformanceComparison with other Controller Design Methods

In order to investigate the effectiveness of the proposed controller design

synthesis and compare the performances with other methods, we take the following

three examples.

4.1 Simply Supported Beam

We have already derived the sensitivity trajectory model for a simply
supported beam in secton 2. Here we consider the same example. As numerical

values we use the following values:

e Beam Parameter:L=n p= -E— El=p
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e Sensor, Actuator, Output Position : r,, =0.30L r.=0 ry=04SL

e Noises: V=1 W=1

Then w;, ¥i(r), O;(r) are given by

=32 r) = < . () =i - T
o =i* W) =sin (1Lr) ®(r) =1 cos (1Lr)

If we choose the first 4 modes as our design and evaluation model, then we obtain

Q=diag (13,2%,3%,4) B,=[1234]T
C, = [sin(0.45 ) sin(2x0.45 1) sin(3x0.45%) sin(4x0.45 )]
M, = [5in(0.307) sin(2x0.30m) sin(3x0.30%) sin(4x0.307)]

Substituting these matrices into A, B, C, D, M and A, B,,, G, D, M, we obtain
the required data for the Trajectory Sensitivity Optimization (TSO) method design
synthesis.

If we choose Q = 1, R = 1 for the weights of the cost function and apply the
standard LQG method, then we obtain the controller whose stability range for
parameter variation and input & output cost are summarized in Table 1. As we can
sce from Table 1, the standard LQG controller is sensitive to the parameter variation
p and EL

We apply the TSO to the same system to reduce the sensitivity. First we
investigate one uncertain parameter case in which only one uncertain parameter is
considered for the design of sensitivity reducing contoller. Next we deal with two
uncertain parameter case in which two uncertain parameters are considered at the

same time for the controller design.
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e Sensivity Reducing Controllers for One Uncertain Parameter Case

Controller Type A

In this case the sensitivity part with respect to mass density variation is
weighted for the TSO cost. Table 2 shows the stability range for parameter
variation and input & output cost of Type A controllers for different weights
B. When we compare Table 1 and Table 2, we see that the stability range for
p variation increases as the weight B increases. In this case the sensitivity to
EI variation is also reduced.

The gain margin, however, decreases as the weight B increases. Fig 2
shows output cost performance change due to p variatdon for different
controllers. As we sec in Fig. 2 and Table 2, the output cost increase rate is
maintained relatively small while the input cost increases pretty rapidly as 8
increases. Therefore tradeoff between the robustness to parameter variation
and the input & output cost should be made to determine the appropriate

weight B.

e Sensivity Reducing Controllers for Two Uncertain Parameter Cased

Controller Type B

In this case two sensitivity terms (i.e, sensitivity terms with respect to p
and K,) are weighted at the same time for the TSO cost. Table 3 shows the
performance of Type B controllers Comparing the results with the standard
LQG controller performance, we notice that controller B-2 can achicve better

robustness for parameter variations p, El and K, also.

4.2 Cart with an Inverted Pendulum

Next we consider the cart with an inverted pendulum shown in Fig 3. The

linearized equations expressed in state-variables form are given by



L. :

'y o1 o o ¢y [ 0]

) 0
z z
| oo -Bg 0 L
-(1—12’.: M <z»+ M u
w16[=loo o 1|)e 0
8 M+m 0 1
() |00 ng N YT

or
x = Ax + B(u+w)
y=z=[1000]x=Cx

z vi 1000
Zn i Zm=)g[ *+ v, =lopo10 x+v=Mx+v

We consider the following two uncertain parameters:

a) Actuator Gain (K,):

We obtain the following sensitivity data.

Kl
(Kdnom
A,=0 B,=B G =0 D,=0 My=0

Trajectory Sensitivity Data : p=

Maximum Entropy Design Data :

Al=0 Bl=0 M‘=O

b) Angle Scnsor Gain (K, :

We obtain the following sensitivity data.
K,

Trajectory Sensitivity Data : p = oo
s/NOM

0000
A;=0 B,=0 C,=0 D,=0 My=|,4 10

Maximum Entropy Design Data :
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0000

e Numerical Values: M=1kg m=0.1kg L=10m g= 9.8m/sec?

10
W=10x10"% V=10x10"¢ [0 1] R=1 Q=1

¢ Sensitivity Reducing Controllers for K, Variation

Three different sensitivity reducing controller design synthesis, 1) TSO
2) Wagie and Skelton method 3) Maximum Entropy method, were applied to
this problem to compare the performance. The performance curves (input &
output cost versus stability range of K, variation) for different controller
designs are shown in Fig 4. As we can see in the figure, the Wagie and
Skelton method cannot improve the robustness for K, variation even if a large
B is chosen. The TSO achieves smaller input & output cost than the
Maximum Entropy method for the same stability margin. Therefore the TSO
is best for this problem in terms of performance cost and robustness to

parameter variation.

e Sensitivity Reducing Conutollers for K, Variation

The Wagie and Skelton method cannot deal with the problem in which
measurcment sensitivity matrix M, is non-zero. Therefore the TSO and the
Maximum Entropy methods were applied to this problem. The results are
shown in Fig 5. In this case the TSO achicves smaller output cost than the
Maximum Entropy method for the same stability margin. whereas it requires
larger input cost than the Maximum Entropy method. Fig § suggests that in
this case there is no big difference between two methods with respect to

performance cost and stability margin for K, variation.
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4.3 Doyle‘s Example

The problem considered here was first given by Doyle [1] and investigated
further by Bemnstein in his Maximum Entropy method [7]. The required data for the
problem are given by Plant Matrices :

11 0 1
A= 01 B= b C=[11] D= 1 M=[10]

Uncertain parameter : binmatix B (b)yom=1

Like the previous example, three different controller design syntheses were applied
to this problem. The performance curves for different controller designs are shown
in Fig 6. In this case the controllers obtained by the Wagie and Skelton method
show worse robustness for parameter variation b than the standard LQG controller.
Therefore the method is unacceptable for this problem. The TSO and the Maximum
Entropy method (For the Maximum Entropy method, we used the results presented
in [7]) show the similar results to those obtained in the previous example (Uncertain

Parameter: K, Fig5).
5. Conclusions

In this paper a new controller design synthesis is presented to irﬁpmvc
robustness to parameter uncertainty. The proposed method uses the trajectory
sensitivity to model the parameter uncertainty and iﬁtroduccs a special cost function
to reduce the parameter sensitivity at both the input and o;uput to the plant. The
order of the controller is equal to that of the nominal plant. The neccessary
conditions for the optimization consist of two Lyapunov equations and two gain
matrix equations. An iterative algorithm was developed to obtain the solution to

these coupled equations. The large sizer of the Lyapunov equations of order 2n(h+1)
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is reduced to several smaller equations, using partitioned forms improving numerical
efficiency.

The new method can deal with a wider class of parameter uncertainty than
cither the Wagie and Skelton method or the Maximum Entropy method. The new
method can deal with parameters appearing nonlinearly in any place; the plant
matrix, the input matrix, the disturbance matrix, the output matrix, and the
measurement matrix.

Numerical examples show that the method is effective in improving
robustness to parameter variations. For examples with a simple parameter structure
other methods can be applied (Maximum Entropy and Wagie, Skelton). In some of
these examples the new method performed as well as these existing methods. In
other examples the new method performed better. The disadvantage of the method
is the lack of a closed form solution. Iterative algorithms are required whose

convergence remains an open question for future research.
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Table 1 Performances of the Standard LQG Controller

Standard L.QG Controller Performances
Gain Margin Kinax 4.087
Stability Range of p Prax 1.173

P = p/(p)noMm Prin 0.677
Stability Range of EI | Pp,, 3.226
P =EV/(EDNom Pin 0.863
Input & Output Cost vy 2.760
V. 0.488

Table 2 Performances of Controllers Type A

Sensitivity Reducing Performances
Controller for p Type A-1 | Type A-2 | Type A-3

Type A B=0.01 B=0.1 B=0.5

Gain Margin Knax 3.247 2.300 1.706
Stability Range p Prax 1.415 1.687 1.802
P = p/(p)nom Poin 0.681 0.596 0.435
Stability Range of EI | Pp 2.774 2.704 2.734
P = E/(El)nom Prin 0.733 0.631 0.607
Input & Output Cost y 2.856 3.147 3.821
\A 1.300 3.709 11.243

Table 3 Performances of Controllers Type B

Sensitivity Reducing Performances
Controllers for p and K, Type A-2  Type B-1 Type B-2
Type B B, =0.1 B, =0.1 B, =0.1
B2=0 B, =1 Bz =10
Gain Margin Kinax 2.300 3.054 4 843
Stability Range p P 1.687 1.567 1.360
P = p/(PInom P | 0.59 0.661 0.687
Stability Range of EI | P, 2.704 1.61R 1.526
P = EI/(EDnom P | 0.631 0.669 0.755
Input & Output Cost \ 3.147 2913 - 2.723
v, 3.709 3.692 3.865
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Figure 4 Performance Comparison of Different Controller

Designs (Uncertain Parameter: Ka)
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Darrell Williamson* and Robert E. Skelton**

Abstract

The existing q-Markov COVER realization theory does not take into account
the problems of arithmetic errors due to both the quantization of states and
coefficients of the reduced order model. All g-Markov COVERs allow some
freedom in the choice of parameters. In this paper we exploit this freedom in the

- existing theory to optimize the models with respect to these finite wordlength

effects.

*Dept. of Systems Engineering, Research School of Physical Sciences, Australian National

University Canberra, ACT 2601, Australia
**School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, U.S.A.

[3]



Introduction

An asymptotically stable system can be characterized in terms of its impulse
response sequence (Markov parameters) and its output covariance sequence
(covariance parameters) due to a zero mean white noise input process. A general
approach has been developed [3] for realizing a system which matches q Markov
parameters and q covariance parameters. Such a system is referred to as a g-
Markov COVER, and gq-Markov COVERs may be generated from output data
[3,4] or from higher order models [5,6]. The Markov and covariance parameters
are not independent and consequently the q-Markov COVER is not unique. In
particular, all g-Markov COVERs are not related by state space similarity
transformations [4]. In this paper we shall exploit the remaining degrees of free-
dom to optimize the q-Markov COVER realization with respect to an aspect of its
finite wordlength realization.

Specifically, when digital controllers are to be implemented, both the con-
troller coefficients and the controller states must be represented in finite
wordlength precision. This finite wordlength (FWL) representation (or quantiza-
tion) causes inaccuracies in the response when compared to the ideal (i.e. infinite
precision) behaviour. Effects of quantization on the controller are increased noise
at the output due to internal state quantization, and errors in time and frequency
response characteristics due to coefficient errors.

In digital filter design, the FWL effects are known to be most significant
when the poles of the filter are very close to the unit circle [12]. In particular,
narrow band filters have all these poles near z= 1tjo. For digital control, the
zero-order-hold equivalent of a continuous time model (or controller) with a pole
at A will have a discrete pole at exp (AT). Hence for fast sampling and/or low
damping of the continuous models, the discrete model will behave like a narrow
band filter. The synthesis of optimal digital contollers with respect to
arithemetic quantization noise is an important consideration in design especially
for continuous time systems operating under a fast sampling rate [9,10]. The
effects of quantization depend highly on the structure of the controller. This
paper secks to reduce these errors in the synthesis of g-Markov COVERs.

1. Discrete q-Markov COVER
Consider the asymptotically stable nominal discrete system
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x(k+1) = Ax(k) + Buk) ; x(k)eR™, u(k)eR™
y(k) = Cx(k) ; y(k)eR™
where {u(k)] is a zero mean process with unit intensity E {u(k)u’()} = I3; and
E (x(k)u"(j)} =0 for k2 j. The Markov parameters M; and covariance parameters
R, of (1.1) are defined by

M;2CAB; R;=CAXC", j20, R;=CXA"IC", j<0 (1.2)
where the state covariance matrix X satisfies the Lyapunov Equation
X=AXA"'+BB". (1.3)

These parameters M; and R; appear as coefficients in the expansion of the transfer
function H(z) and power spectral density H(z)H"(z™!); that is

(1.1)

H(z) = C(zl-A)'B = SMz ™), H@H'()= ¥ Rz
i=0 jo—oe

We suppose that as data we are given the first g-Markov and first g-covariance
parameters {M;,R;; i =0, 1, .., g-1} of an asymptotically stable system from
which we construct the two data matrices

_A L]
D SR,-MM, eR7™A
D 2R ~M M, e R (1.42)
where R, M and M q are the Toeplitz matrices of the data as defined by

Ry Rf ..R]
R, Ry .. R;.;
R,=|: : (1.4b)
Re2 o -

Rg1 Ryg .. Ro |
[0 o . 0 0 (M, 0 .. 0]
M, O 00 M M, 0
Mi=| M M, Mo=| oo
N - M2 0
Mgz Mg ... M, 0] Mgt My, ... My

The first data matrix D¢ in (1.4a) is Hermitian and it is shown in [3-4] to be
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positive semidefinite. Hence we can obtain a (nonunique) full rank factorization

D =PpPg; PR, (1.52)
where
r, 2 rank (D ) =rank(P)) S n,q (1.5b)
If we partition P, according to
Py = [Eq Fyl; EgeR™™, FeRT™™ (1.6)
then it follows that the second data matrix D, q can be factored as
— == = o
D =PpP;; PgeR¥™ )
where
g * *
P =[F; Ggl; GeR™™ (1.8)

for some G (to be determined). The following result has been established.

Theorem 1.1 [3]
~ Given the q Markov parameters {M;;i=0,1, ...,q~1} and the q covariance
parameters {R;;i=0,1,...,q-1} and a matrix G in (1.8) such that (1.7) is
satisfied, then the realization (Aq, B, Cq} of order r, defined by
Aq=P;’Pq; Bq=P;[M0 o Mgl G=Eq 1.9
where P;' denotes the Moore-Penrose inverse of P is a g-Markov COVER. The
corresponding controllability grammian X, is given by
X =1 (1.10)
Furthermore
P, =[C; AJCy - - AFNH'CT S (1)

]

This theorem describes a large but nor complete class C of q-Markov _COVERs
parameterized by {G,} such that for some E F, the data matrices D g, D ¢ satisfy
(1.5)~(1.8). Each matrix G4 will (generally) result in a g-Markov COVER having
a different transfer function. In order to compute the set of all such Gq, observe
in (1.5)-(1.8) that
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E‘l ..
Dy=|g | EqFy). (1.12a)
Then
D1 4| [F
= ¢-1 q . »
Dy = d-; - |= [Gq] [Fq Gql (1.12b)
d-qqe R
implies
EqE; =R,, FF ; =Bq-1' FqG; = aq' C‘ch: =qu (1.13)
Now expand D, in terms of its singular value decomposition
> 0 | Uy -
D= Ud | g ¢ Ul i Y1€RTY. (1.14)
Then from (1.12a)
| (€, Fp)=X1?Uu; (1.15)

so that E; = C, is defined by the first n, rows and F, by the last (g—1)n, rows of
U; 32, Define

pq 2 rank (Fy) . (1.162)
Then from (1.15)
pq S min (1, (3-1)ny) . (1.16b)

Next, expand Fq in (1.13) in terms of its singular value decomposition. If strict
inequality occurs in (1.16b) we have

¥, 0 | Ve
Fo=[UaUsl| o of |y + Zqs RP (1.17)
The Moore-Penrose inverse F of F is then given by

Fr=V,¥:1U, ~ (1.18)

Corollary 1.1



Define
@) Gy 2 (F; ) e R™™ (1.19)

(i) Ggze R™™ such that GG = dog—d Dy1d,
where
sy 2 rank [d g ~ d;D}.; 4] (1.20)
and _
(iii) Gg3 2 Vg e REPH, (1.21)

Then if strict inequality occurs in (1.16b) the set of all G, which satisfy (1.13) are
defined by

Gq = qu + GQZUqu3 (1.228.)
where
U,e RO, 5 <1 —p <n, (1.22b)

is an arbitrary row unitary matrix (i.e. UqU; =1I). Furthermore, if the Moore-
Penrose Py of

P =[E; KT’ (123)
is expressed as
Py=[Ly Ligl; Ly e R¥OD™, 1ye ™ (1.24)

then the corresponding state space representation [Aq, By, Gy} of the g-Markov
COVER is given by

Ag=L;; +L5Gy; Ly =LjF e R™"
B =PjIMgM; --- M,1"; C =E,. L (129)
If rq = pg, then G, = Gy, is unique.
Proof: The expression for FqG; in (1.13) implies G; is of the form
G, =F}d +GuM"; Me R
for some M. Then expanding GqG; using (1.13) we have
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B =GR, + LD M+ MO R, + MOO5M

Also from (1.13) and (1.21)

EN'Fr=Dg1, GuGu=1; FH'Gy=0 (126)
so that
MM = g - B,
Since MM has rank s,
$q= rank(quG,;z) S19-Pq

2. Optimal Finite Wordlength g-Markov COVER

" A fixed point finite wordlength realization of the ideal (i.e. infinite precision)
q-Markov COVER (1.1) shall be referred to as a g-FWL Markov COVER and is
described by

#(k+1) = AQIR(K)] + Ba(k)
() = CQIR(K)] @2.1)

Q(k)] = X(k) — e(k)

The components of the matrices A, B, € are assumed to have a W, bit fractional
representation obtained by quantization of the components of A, B, C in (1.1).
The components of X(k) have a W+W,, bit fractional part while components of
Q[X()] and fi(k) all have a W bit fractional part. The components of the state
residue vector e(k) has a W+W,, bit fractional representation in which the most
significant W bits are zero. The LHS and RHS of (2.1) are therefore consistent
with respect to their fractional wordlength representation. The number of bits
required to represent the integer parts of A,Band C depend on the dynamic range
of the coefficients. State space structures in which all coefficients are less than
unity are therefore advantageous in this regard. The required integer representa-
tion of Q[x(k)] will depend on the dynamic range of the input signal i(k). Inade-
quate dynamic range will result in arithmetic overflow. - The accuracy in the com-
putation of (k) is determined by its fractional wordlength W.

Define the state error vector €,(k) and output error vector eykk) by
&(k) = (k) - x(k); &,(k) = (k) - yk) (22)
Then from (1.1), (2.1) and (2.2)
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gx(k+1) = Ag,(k) + Ae(k) + AAQ[R(K)] + ABu(k) + BAu(k) (2.3)
gy(k) = Cey(k) + Ce(k) + ACQ[R(K)]

where
AA=A-A; AB=B-B; AC=C-C

Au(k) = ii(k) —u(k)

There are five terms which contribute to the output error (i) internal arithmetic
errors e(k) due to state quantization (ii) coefficient errors due to errors AA in A
(iii) AB in B (iv) ACin C, and (v) input quantization errors Au(k). Under weak
*sufficiently exciting’ conditions on the input {u(k)} it can be shown [6] that if
QI‘] in (2.1) denotes 'roundoff’ quantization, then {e(k)} is a zero mean uniform
white process with covariance

E (ee’0) =5 P= =22V, 2.4)
Similarly {Au(k)} is assumed to be a zero mean white uniform process with
E {Au(@A"u(k)} =1 (2.5)

We assume that the quantized coefficients A, B, € are obtained by rounding A, B,
C to W, bit fractions. Consequently, all components Ap of the error matrices AA,

AB, AC satisfy

1Apl <Y, Yo = % 3. 2.6)
For simplicity we normalize the error matrices and define 3A, 3B, 3C by
8A=-—1-AA; SB=LAB; 8C=i-AC Q.7
o Yo Yo
so that all components 8p of A, 8B and 8C satisfy
I6pl <1. 2.8)

The steady state output error covariance Y of {E(k)} is then given by
Y = CPC" + YCC" + 2O XK+PD(E0)° - 1, ICEO)" + (5O)C'], (2.9)
where '

P=E (g (k)e; (k)
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= APA" + YAA" + 2(BA)X+¥D(BA)" + ¥2(5B)(3B)’ + ¥'BB”

-and

X=E (202 ®) = AXA)" + PAA)" + (1+))BB’
For the remainder of this section we assume no coefficient errors (i.e. y,=0in

(2.9)) and consider only the effects due to finite state wordlength (FSWL). The
issue of coefficient error shall be resumed in Section 5.

Theorem 2.1
Define the output noise measure
72 ulY].
Then fory, =0
J=v*{u[K] + t[B°KB]} (2.10)
where
K=AKA+C'C. (2.11)

Proof: From (2.9)
Y=CPC"; P=APA’+yZ=P+y1

where
Z=1+BB";
Now
P=y ¥ AXzZ(AH*
k=0
and
K=Y (A%’C’cAk
k=0
so that

t[CPC"] = YAr(ZK) .
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A fixed point q-FSWL Markov COVER corresponding to the (ideal) g-

.Markov COVER (1.1) is therefore described by

f(k+1) = AQ[(k)] + Bii(k)
y(k) = CQIx(k)] (2.12)
QRK)] = &(k) — e(k)

The output noise gain (n,) due to state quantization and the output noise gain
(M) due to input quantization are defined by
N4 v[K]; 1,2 u{B'KB] @.13)

The noise gain M, generally varies with state space representation whereas 1, is
independent of the coordinate basis. Specifically, consider the q-FSWL Markov
COVER

2(k+1) = A Q[z(k)] + B (k)
y(k) = CQ[2(k)] (2.14a)
Qlz(k)] = z(k)—f(k)

where
A=TIAT, B=T!B, C=CT (2.14b)

and Q[z(k)] has a W bit fractional representation. Assuming ’sufficient excita-
tion’ by fi(k), the state residue sequence {f(k)} in (2.14a) due to roundoff quanti-
zation will again be a zero mean white uniform process with covariance I as in
(2.5). The corresponding output quantization noise gains 7, and 1, due respec-
tively to state and input quantization are given by

N, =tlK,}; 1, =t{B'K,B] o @15)
where B is given by (2.14b) and
K,=AKA"+C"C. (2.16)
But from (2.11), K, = T°KT, so that .
n,=t[T°KT}; 1, =B KB] . (2.17)

Notice from (2.13) that the noise gain 7, due to input quantization errors is unaf-
fected by a similarity transformation. Conversely the noise gain n, due to state
quantization generally changes with co-ordinate bases. There is no change if T is
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unitary. The q-FSWL Markov COVER (2.14) is superior to the q-FSWL Markov

.COVER (2.12) if

M <Ny (2.18)

However the comparison in (2.18) must be made under the assumption of identi-

cal scaling of the states X(k) and 2(k). Specifically, equal 1,-scaling of gain

from a zero mean unit intensity white noise input fi(k) to the state components
R;(k) of (k) requires

X;=aforallj (2.19)

where X;; denotes the jth diagonal component of the state covariance matrix X

given by (1.3). Equal l,-scaling of gain o of components of Z(k) in (2.14)

requires

Z;=a; Z=AZA" +BB" (2.20)

Equality in 1)-scaling of representations (2.12) and (2.14) is equivalent to equality

in the state dynamic range (i.c. number of bits in the integer representation of

states) for a given probability of overflow. We now state a result which is impor-
tant for establishing 1,-scaling.

Lemma 2.1 [8,9] Suppose M=M" >0 is an nxn matrix. Then a necessary and
sufficient condition for the eﬁspncc of a>umtary matrix V such that
(WMV/'= o for all j
is
tr[M] =no,
o4

We have shown in Lemma 1.1 that different similarity transformations of an
ideal q-Markov COVER corresponds to different factorization of the first data
matrix D, in (1.52). Our aim is to optimize this factorization.

Definition 2.1

The Optimal q-FSWL Markov COVER minimizes the output quantization
noise gain 1} due to state quantization errors; that is
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=min a{T'K,T); T'T=A"" 221
| Nope x,lpg: (T KqT] (2.21)
subject to the 1,-scaling constraint:
Aj=a forallj (2.22)

where the observability grammian K, satisfies

K,=AKA,+C,C, (2.23)

with {Ag, By, C,} defined by (1.22)-(1.25).

oo

~ In corollary 1.1 we have shown that all the degrees of freedom available to
select G are confined to an arbitrary row unitary matrix U,. We now show how
to optimize U,
Theorem 2.1
a. The optimal q-FSWL Markov COVER (1.21a), (1.24) is defined by

Tope =1q ' in (fKy)? (2.:24)
1

where U e RGP ig an arbitrary row unitary matrix and K, satisfies
(2.23).

. The transfer function of the optimal q-FSWL Markov COVER has Hankel

singular values given by the eigenvalues of K defined by the minimizing

U,

. Suppose Uy =U, is the minimizing solution corresponding to the optimal

Gq=Ggo in (1.21). Let {Ags, Bgo, Cgo) be the corresponding state space

realization in (1.24). Then the optimal q-FSWL Markov COVER has a
(nonunique) state space representation {T, lAquo, Ty quo, Cqold where

T,=Ux,V, (2.25)

such that

(i) the unitary matrix U, is defined by

UyKgoUp = X2 (2.262)

where
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Ko = AqoKooAgo + CqoCoo s T =diag(ofy, 03, . G0} (2:26b)

“in which {O’j%} are the optimal Hankel singular values (eigenvalues of Kqo)-

(ii)
2= (2 60 35! 2.27)
azrq k=1
and (iii) V, is unitary such that
Ty
2 O
(VoXoVa)j = —— forall j (2.28)
q
. el 2
TMope = Mg (Optimal) = _Zr—(z Cio) (2:29)
Ty k=1

Proof: By corollary 1.1 we have for G defined by (1.22) for any row unitary
matrix U, (of appropriately specified dimensions) that G, defines a g-Markov
COVER. The corresponding realization {A4,B.,C,} for each such U has identity
controllability grammian and observability grammian K defined by (2.23). Now
given a particular Uy, apply a similarity transformation

T=U,r,V,
to the given g-Markov COVER. Then
tr(TK,T) = tr(x2U, K U,)
and
T = Von2v,

By lemma 2.1, the 1;-scaling constant can be satisfied for some V, provided
tr(ry’ 2) =no. Following Williamson [1, Theorem 4.1] (with a minor modification
of the 1,-scaling constraint), the optimal performance is given by

l'q 2
(20'5)
= o=1
Tlgope o’rg

where {O'jz} are the eigenvalues of K. That is,
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wKH=3 o
=

The optimal -FSWL Markov COVER therefore achieves the minimum in (2.24).
The structure of U, &, V, in (2.25)-(2.29) follow directly from Williamson [1]
(see proof of Theorem 4.1 with U =1).

3. Computation of the Optimal FSWL Markov COVER

Necessary conditions for the optimal solution in Theorem 2.1 can be
obtained using the method of Lagrange multipliers. Specifically, let

¥ = (oK D2 + e ACKFATK A, + C CYI + t{QI-UUD]  (B.1a)
where
A=A"eR™¥S Q=Q e R ¥ (3.1b)

are symmetric Lagrange multipliers. After taking derivatives of J using (1.22)
and (1.25)

‘aajj\'=Kq‘A; Aq"C;Cq
aisz' =1-UU;
% =20+ 24K + 24 AA K (3.2)
a1

-an' = 2Gq2L12KquAGq3 - qu

By setting these derivatives to zero we obtain the following result.

Lemma 3.1 Necessary conditions for the derivation of the optimal q-FSWL Mar-
kov COVER are given by

Ky=AgKgAg + GG
-A=AAA +K;%; A=A"e R™™

UU; =1 ; Uge RWEPY (3.3)
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QU -PUQ =R, ; Q=Q"eR*"™

where

Py =P =GLK|L 3Gz € R™™
Q=Q] =GgAGgy e RPHEPI (3.4)
Ry = GLi2K,(Ly1+L12G)AGg € R¥APY

and A, Gy, L; are defined by (1.20)-(1.24)
oo

These necessary conditions cannot be solved explicitly for the optimal row
unitary matrix U and so an iterative procedure is required. One possible algo-
rithm is now described.

Recursive Algorithm for Optimal q-FSWL Markov COVER:
(0) Setj=0and choose any row unitary U.(0) in (1.21a)
(1) Form A(j) from
Aq() = (L1 +L12Gqy) + L12GoU )Gy (3.53)
(2) Compute KyG): K1() = AqKq()AG) + CqCq (3.5b)
(3) Compute AG): ~AG) = A{DADALG) +K %) AG)=A"@.5¢c)
(4) Compute P.(j), Q,() Ry():
Py() = GolpKq(LizGozt Q@) =Gg3A(Ggzs
Ry() = Ggal12KqG)(L11+L12G1)AG)Gy3 (3.5d)
(5) Update U(j) by solving ﬁc nonlinear algebra problem:
QUG+ - PHULGHDQM =Ry QG =Q°G) (3.5¢)
U G+DUyG+1) =1 |

The most difficult step at each stage of the algorithm is to solve (3.5¢) for a row
unitary Ug(j+1) and symmetric (j). There is generally no explicit solution





